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The rotation form of the Navier–Stokes equations nonlinearity is commonly used in high
Reynolds number flow simulations. It was pointed out by a few authors (and not widely
known apparently) that it can also lead to a less accurate approximate solution than the
usual u � ru form. We give a different explanation of this effect related to (i) resolution
of the Bernoulli pressure, and (ii) the scaling of the coupling between velocity and pressure
error with respect to the Reynolds number. We show analytically that (i) the difference
between the two nonlinearities is governed by the difference in the resolution of the Ber-
noulli and kinematic pressures, and (ii) a simple, linear grad–div stabilization ameliorates
much of the bad scaling of the velocity error with respect to Re. The rotation form does
have superior conservation properties to the alternatives and it appears to be amenable
to more efficient preconditioners. Thus, the rotational form with grad–div stabilization is
a promising method. We also give experiments that show bad velocity approximation is
tied to poor pressure resolution in either form.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The nonlinearity in the Navier–Stokes equations (NSE) can be written in several ways, which, while equivalent for the
continuous NSE, lead to discretizations with different algorithmic costs, conserved quantities, and approximation accuracy,
e.g. [9,10]. These forms include the convective form, the skew-symmetric form and the rotation form, given respectively by
u � ru; u � ruþ 1
2
ðdivuÞu; and ðr � uÞ � u:
In turbulent flow simulations, different forms of the nonlinearity are used for different reasons. The algorithmic advantages
and superior conservation properties of the rotation form (summarized in Section 2.2) have led to it being a very common
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choice, see, e.g. Chapter 7 in [5,6,24]. Herein we reveal potential limitations of rotation form, and suggest a way to overcome
them.

It is known from Horiuti [14], Horiuti and Itami [15] and Zang [33] that the rotation form can lead to a less accurate
approximate solution when discretized by commonly used numerical methods. Horiuti [14] and Zang [33] each give numer-
ical experiments and accompanying analytic arguments suggesting that the accuracy loss may happen due, respectively, to
discretization errors in the near wall regions (Horiuti, for finite-difference methods) and to greater aliasing errors (Zang, for
spectral methods). We have noticed the same loss of accuracy in experiments from [20,26] (for finite element methods) and
suggest herein a third possibility that it is due to a combination of:

1. The Bernoulli or dynamic pressure P ¼ pþ 1
2 juj

2 is generically much more complex than the pressure p, and thus
2. Meshes upon which p is fully resolved are typically under resolved for P, and
3. As the Reynolds number increases, the discrete momentum equation with either form of the nonlinearity magnifies the

pressure error’s effect upon the velocity error.

We will see, for example, that in the usual formulation Velocity Error � Re* Pressure Error, (2.13). Thus, interestingly, some
of the loss of accuracy, although triggered by the nonlinear term, is due to connections between variables already present in
the linear Stokes problem.

In finite element methods (FEM) the inf–sup condition for stability of the pressure places a strong condition linking veloc-
ity and pressure degrees of freedom. This condition, while quite technical when precisely stated, roughly implies that for
lower order approximations the pressure degrees of freedom should correspond to the velocity degrees of freedom on a
mesh one step coarser than the velocity mesh, while for higher order finite elements the polynomial degree of pressure
approximations is less than the polynomial degree of velocity approximations. Thus, in either case for velocities u and Ber-
noulli pressures P with the same complex structures, as the mesh is refined the velocity will be often fully resolved before the
Bernoulli pressure is well-resolved, see the experiments in Section 3.3 involving flow around a cylinder. Further, when an
artificial problem, constructed so the kinematic pressure and Bernoulli pressure reverse complexity, is solved the observed
error behavior is reversed: the convective form has much greater error than the rotation form, Section 3.2.

The question of resolution is reminiscent of Horiuti’s argument based on truncation errors in boundary layers. For exam-
ple, even for a simple Prandtl-type, laminar boundary layer, the pressure p will be approximately constant in the near wall
region while the Bernoulli pressure P ¼ pþ 1=2juj2 will share the OðRe�1=2Þ boundary layer of the velocity field.

Point 3 is possibly related to aliasing errors; interestingly, the aliasing error in using different forms of the nonlinearity is
governed by the resolution of the (Bernoulli or kinematic) pressure. Our suggestion of a ‘‘fix” of using grad–div stabilization
(see Section 2.3) works in our tests because it addresses point 3 without requiring extra resolution.

Stabilization of grad–div type reduces the error in divuh, see (2.15), and its (bad) scaling with respect to the Reynolds
number. Moreover, since when divuh ¼ 0 the nonlinear terms are equivalent, this stabilization causes the three schemes
to produce more closely related solutions.

Generally speaking, adding the grad–div terms to the finite element formulation is not a new idea. These terms are part of
the streamline-upwinding Petrov–Galerkin method (SUPG) in [8,12,31]. However, in practice these terms are often omitted,
and until recently it was not clear if they are needed for technical reasons of the analysis of SUPG type methods only or play
an important role in computations. The role of the grad–div stabilization was again emphasized in the recent studies of the
(stabilized) finite element methods for incompressible flow problems, see e.g. [2,3,22,23,25], also in conjunction with the
rotation form, see [21,26].

We shall thus compare FEM (or other variational) discretizations of the rotation form of the NSE, given by
ut � u� xþrP � mDu ¼ f; ð1:1Þ
divu ¼ 0 ð1:2Þ
with the usual convection form, given by:
ut þ u � ruþrp� mDu ¼ f; ð1:3Þ
divu ¼ 0 ð1:4Þ
and the skew-symmetric form, given by:
ut þ u � ruþ 1
2
ðdivuÞuþrp� mDu ¼ f; ð1:5Þ

divu ¼ 0: ð1:6Þ

These are related by
P ¼ pþ 1
2
juj2 and x ¼ curlu:
Finally, we note that the rotation and convection (or skew-symmetric) forms lead to linear algebra systems with different
numerical properties, which occur in time-stepping or iterative algorithms for the NSE problem. While there is an extensive
literature on solvers for the convection form, see e.g. [7], not so many results are known for the rotation form. However, the
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few available demonstrate some interesting superior properties of the rotation form in this respect. In [26,28] it was shown
that the rotation form enables one to take into account the skew-symmetric part of the matrix in such a way that a special
pressure Schur complement preconditioner is robust with respect to all problem parameters and becomes even more effec-
tive when m! 0. Such type of result is still missing for the Oseen type systems with the convective terms. An effective mul-
tigrid method for the velocity subproblem of the linearized Navier–Stokes system in the rotation form was analyzed in [27].
Finally, in [1] the special factorization of the linearized Navier–Stokes system was studied, which appears to be well suited
for the rotation form.

In general, it has been reported over the years that numerical errors from a specific discretization of different forms of the
nonlinear terms in the Navier–Stokes equations have different effects on the accuracy and stability of flow problems. Wil-
helm and Kleiser [32] showed that for the PNPN�2 spectral element method (in which the velocity and pressure are approx-
imated by polynomials of order N and N � 2, respectively), numerical instabilities may occur in incompressible Navier–
Stokes simulations when the rotational form is not used. Furthermore, they demonstrated that the reported instability is
not caused by nonlinear effects, but it is rather a consequence of the staggered grid between velocity and pressure used
in spectral element method. Analytical and numerical studies of incompressible Navier–Stokes equations of Kravchenko
and Moin [19] show that aliasing errors are more destructive for spectral and high-order finite-difference calculations than
for low-order finite-difference simulations of turbulent channel flow. The study shows that for skew-symmetric and rota-
tional forms, both spectral and finite-difference methods are energy conserving even in the presence of aliasing errors.
The effect on aliasing errors of the formulation of nonlinear terms for Burger’s equations and for compressible Navier–Stokes
equations was examined by Blaisdell et al. [4] using a Fourier analysis and numerical experiments. The skew-symmetric
form of the convective term is the form that reduced amplitude of the aliasing errors as shown theoretically and experimen-
tally. The analysis method for the rotational form was too complicated to draw any conclusions regarding it. Alternative
forms of the compressible Navier–Stokes equations were also studied from the heuristic point of view by Kennedy and Gru-
ber [18]. Finally, we note that the name ‘‘rotation form” is sometimes attributed to the sum of two terms:
ðr � uÞ � uþ 1

2rjuj
2 [14,15,32], while in this paper we treat 1

2 juj
2 as a part of the Bernoulli pressure variable. Due to typi-

cally different discretizations (meshes) for pressure and velocity, these two alternatives lead to discrete problems with dif-
ferent properties. Thus, if 1

2 juj
2 is treated as a part of the pressure term, we expect that the under resolution of Bernoulli

pressure variable may affect not only finite element, but other type of discretizations as well.

2. Differences between the nonlinearities

We now illustrate some differences between the three different forms of the NSE nonlinearity. First we discuss the Ber-
noulli pressure, which is used instead of usual pressure, with the rotation form of the nonlinearity, and present a bound
(based on the velocity part of the Bernoulli pressure) for the rotation form FEM residual in the convective form FEM. Next,
we elaborate the difference in conservation laws of the (FEM discretized) nonlinearities. Lastly in this section, we present a
brief description of grad–div stabilization, discuss how it reduces the differences between the nonlinearities, and show how
its use allows for better scaling of velocity error with the Reynolds number.

2.1. Rotation form and Bernoulli pressure

The resolution of the Bernoulli pressure (a linear effect) also critically influences the difference between the nonlinearity
in the convective and rotation forms. We show that it depends upon the resolution of (the zero mean part of) the kinetic
energy in the pressure space. This is the dominant part of the Bernoulli pressure. To quantify this dependence, consider
the rotation-form-FEM for the simplest nonlinear (internal) flow problem, the equilibrium NSE under no-slip boundary con-
ditions. Let Uh;Qh denote the velocity–pressure finite element spaces. The usual L2ðXÞ inner product and norm are always
denoted by ð�; �Þ and k � k. The velocity–Bernoulli pressure approximations uh; Ph satisfy
mðruh;rvhÞ � ðuh � curluh;vhÞ þ ðqh;divuhÞ � ðPh;divvhÞ ¼ ðf;vhÞ ð2:1Þ
for all vh; qh 2 Uh;Q h. If Vh denotes the usual space of discretely divergence free velocities
Vh :¼ vh 2 Uh : ðqh;divvhÞ ¼ 0 8qh 2 Q hf g;
then the approximate velocity uh from (2.1) satisfies
mðruh;rvhÞ � ðuh � curluh;vhÞ ¼ ðf;vhÞ 8vh 2 Vh: ð2:2Þ
Similarly, the FEM formulation for the convective form formulation is given by
mðruh;rvhÞ þ ðuh � ruh;vhÞ ¼ ðf;vhÞ 8vh 2 Vh: ð2:3Þ
The natural measure of the distance of the rotation forms approximate velocity from satisfying the convective forms dis-
crete equations is the norm of residual of the former in the latter. Define this residual rh 2 Vh via the Riesz representation
theorem as usual by
ðrh;vhÞ :¼ ðf;vhÞ � mðruh;rvhÞ þ ðuh � ruh;vhÞ½ � 8vh 2 Vh: ð2:4Þ
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Proposition 1. Let uh be the solution of (2.1) and let rh be its residual in (2.3), defined by (2.4) above. Let
M ¼mean
1
2
juhj2

� �
¼ 1
jXj

Z
X

1
2
juhj2dx:
Then,
krhkðVhÞ0 6 sup
v2Vh ;div vh–0

ðrh;vhÞ
kr � vhk

6 inf
qh2Qh

1
2
juhj2 �M

� �
� qh

����
����:
Proof. Using the vector identity �uh � curluh þrð12 juhj2Þ ¼ uh � ruh gives that, for any real number M, (and in particular for
M ¼ meanð12 juhj2Þ),
ðrh;vhÞ ¼ � r
1
2
juhj2 �M

� �
;vh

� �
¼ 1

2
juhj2 �M

� �
� qh;r � vh

� �
8qh 2 Q h:
(We have integrated by parts and used ðqh;divvhÞ ¼ 0;8qh 2 Q h.) The Cauchy–Schwarz inequality and duality implies that, as
claimed,
sup
v2Vh ;div vh–0

ðrh;vhÞ
kr � vhk

6 inf
qh2Qh

1
2
juhj2 �M

� �
� qh

����
����: �
2.2. Conservation properties of the nonlinearities

The conservation properties of an algorithm can provide insight into both the physical fidelity and accuracy of its solu-
tions. Fundamental quantities of the NSE such as energy ðE ¼ 1

2 kuk
2Þ, helicity ðH ¼ ðu;r� uÞÞ, and in 2d enstrophy

ðEns ¼ 1
2 kr � ukÞ, play critical roles in the organization of a flow’s structures. The NSE holds delicate physical balances for

each of these quantities, and these balances reveal how each term of the NSE contributes to their development. An NSE algo-
rithm enforcing similar balances (e.g. discrete analogs) for energy, and helicity or 2d enstrophy is thus more likely to admit
solutions with similar physical characteristics as the true solution.

To gain insight into the balances admitted by an algorithm, conservation laws are typically studied in the periodic case
without external or viscous forces. Although this case is of little practical interest, if an algorithm fails to uphold conservation
in this flow setting, it has little hope for predicting correct physical balances in irregular domains and/or complex boundary
conditions.

Consider now conservation laws for energy and helicity in Crank–Nicolson FEM schemes for the NSE with rotation form
(1.1) and (1.2), convective form (1.3) and (1.4), and skew-symmetric form (1.5) and (1.6). The schemes are defined by: given
u0

h 2 Vh; f 2 L2ð0; T; V 0hÞ, time step Dt > 0, kinematic viscosity m > 0, end time T, find ui
h 2 Vh for i ¼ 1;2; . . . ; T

Dt satisfying rota-
tion form:
1
Dt

unþ1
h � un

h;vh
� �

þ br unþ1
2

h ;unþ1
2

h ;vh

	 

þ m runþ1

2
h ;rvh

	 

¼ fnþ1

2;vh

	 

8vh 2 Vh: ð2:5Þ
Convective form:
1
Dt

unþ1
h � un

h;vh
� �

þ bc unþ1
2

h ;unþ1
2

h ;vh

	 

þ m runþ1

2
h ;rvh

	 

¼ fnþ1

2;vh

	 

8vh 2 Vh: ð2:6Þ
Skew-symmetric:
1
Dt

unþ1
h � un

h;vh

� �
þ bs unþ1

2
h ;unþ1

2
h ;vh

	 

þ m runþ1

2
h ;rvh

	 

¼ fnþ1

2;vh

	 

8vh 2 Vh; ð2:7Þ
where
br unþ1
2

h ;unþ1
2

h ;vh

	 

¼ � unþ1

2
h � ðcurlunþ1

2
h Þ;vh

	 

;

bc unþ1
2

h ;unþ1
2

h ;w
	 


¼ unþ1
2

h � runþ1
2

h ;vh

	 

;

bs unþ1
2

h ;unþ1
2

h ;w
	 


¼ unþ1
2

h � runþ1
2

h þ 1
2
ðdivunþ1

2
h Þu

nþ1
2

h ;vh

� �
:

By choosing vh ¼ unþ1
2

h in each scheme and eliminating viscous and external forces, it is revealed that kunþ1
h k2 ¼ kun

hk
2 and

thus energy is conserved in the rotation (2.5) and skew-symmetric (2.7) schemes. For the convective form, however, we do
not have exact energy conservation. Instead (using ðqh;r � u

nþ1
2

h Þ ¼ 0 in the last step)



Table 1
Relative flux errors at Re ¼ 1.

Number of degrees of freedom

338 1028 3853

Convective form 6:24593 � 10�8 6:24593 � 10�8 6:24593 � 10�8

Skew-symmetric form 4:92659 � 10�7 6:2396 � 10�8 6:24593 � 10�8

Rotation form 1:04348 � 10�7 6:42264 � 10�8 6:25398 � 10�8
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1
2
kunþ1

h k2 ¼ 1
2
kun

hk
2 þ Dtðunþ1

2
h � runþ1

2
h ;unþ1

2
h Þ ¼

1
2
kun

hk
2 þ Dt

1
2
ðunþ1

2
h Þ

2
;r � unþ1

2
h

� �
; ð2:8Þ

¼ 1
2
kun

hk
2 þ Dt inf

qh2Qh

1
2
ðunþ1

2
h Þ

2 �M
� �

� qh;r � u
nþ1

2
h

� �
; ð2:9Þ

where M ¼mean
1
2
junþ1

2
h j

2
� �

¼ 1
jXj

Z
X

1
2
junþ1

2
h j

2 dx: ð2:10Þ
Exact energy conservation in the convective form scheme (2.6) thus depends on divunþ1
2

h (and the resolution of the key
component of the Bernoulli pressure in the pressure space), which is nonzero since incompressibility is only weakly en-
forced. Hence it is possible (and well known to be likely) that these ‘‘small” errors in the energy balance at each time step
can accumulate and significantly alter the solution.

Regarding helicity (3d) and enstrophy (2d) conservation, by choosing vh ¼ PVh
ðcurluhÞ in the three schemes, it can be seen

that none of the schemes conserve helicity; indeed all of the three nonlinearities alters helicity. However, it was shown in
[29] that if the curl in the rotation form nonlinearity is replaced with the Vh-projected curl, then the rotation scheme will
conserve helicity. To our knowledge, no such alterations can be made to (2.6) or (2.7) to maintain physical treatment of helic-
ity. It is pointed out in [14] that for finite-difference schemes, the rotation form shows superior conservation properties to
the convective form in that rotation form conserves mean momentum, energy, helicity, enstrophy and vorticity vs. just mean
momentum and energy for the convective form.

2.3. Grad–div stabilization

The three forms of the nonlinearity, and thus the three schemes (2.5)–(2.7) are equivalent when divuh ¼ 0. Since this con-
dition is only weakly enforced, divuh may grow large enough to cause significant differences between the schemes; as our
numerical experiments show, this is especially true near boundaries for the rotation form. Grad–div stabilization can help to
correct this error for steady, incompressible flow [26], and through our experiments in Sections 3.2 and 3.4 we show that this
stabilization technique is also effective for unsteady flow.

To understand better the role of adding the grad–div term to the finite element formulation we consider the model case of
the Stokes problem:
� mDuþrp ¼ f; and divu ¼ 0 in X;

u ¼ 0 on @X: ð2:11Þ
Given normal velocity–pressure finite element spaces Uh;Q h, satisfying the discrete inf–sup condition, the grad–div stabi-
lized FEM for this problem is: Pick stabilization parameter c P 0 and find uh; ph 2 Uh;Q h satisfying
mðruh;rvhÞ þ cðdivuh;divvhÞ � ðph;divvhÞ þ ðqh;divuhÞ ¼ ðf;vhÞ 8vh; qh 2 Uh;Q h: ð2:12Þ
For the case c ¼ 0 a common argument is to rescale the equations by ~p ¼ m�1p;~f ¼ m�1f . This leads to a parameter-indepen-
dent Stokes problem with a new pressure variable and right-hand side. One can then use known results for this Stokes prob-
lem (in u; ~pf g) and transform back to the fu; pg variables. The first and most basic result in the numerical analysis of the
(parameter-independent) rescaled Stokes problem is that
krðu� uhÞk 6 C inf
vh2Uh

krðu� vhÞk þ inf
qh2Qh

k~p� qhk
� �

:

Converting back to the original dependent variables gives
krðu� uhÞk 6 C inf
vh2Uh

krðu� vhÞk þ
1
m

inf
qh2Qh

kp� qhk
� �

: ð2:13Þ
This has the interpretation that: Velocity Error � Re � Pressure Error. For example, a further development of these estimates
give the error bound in the rescaled variables
krðu� uhÞk þ k~p� ~phk 6 Ch krruk þ kr~pkð Þ:
In the original variables this immediately yields



Table 2
Velocity

Reynold

Convect
1
10

Skew-sy
1
10

Rotation
1
10

Table 3
Velocity

Reynold

Convect
1
10

Skew-sy
1
10

Rotation
1
10

Fig. 2.
14,455,
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krðu� uhÞk þ
1
m
kp� phk 6 Ch krruk þ 1

m
krpk

� �
ð2:14Þ
with a constant C that is independent of m. Numerical experiments, see [25], shows that (2.14) is sharp. If c > 0, (2.12) cannot
be so rescaled unless c ¼ m. Otherwise, for (2.12) the following estimate is valid [25, Theorems 4.2 and 4.3]:
and pressure errors for NSE in test 1: various forms and Reynolds numbers.

s number ku� uhk1;0 kru�ruhk2;0 kp� phk1;0 krp�rphk2;0

ive form
1:27984 � 10�11 4:0987 � 10�11 3:48078 � 10�9 2:02411 � 10�10

1:2750 � 10�11 4:22028 � 10�11 3:17668 � 10�9 1:26608 � 10�10

mmetric form
6:56789 � 10�5 6:42861 � 10�4 1:0656 � 10�2 4:84275 � 10�3

8:42768 � 10�2 7:99285 � 10�1 9:18175 � 10�1 7:86798 � 10�1

kP � Phk1;0 kjrP �rPhjk2;0

form
1:17773 � 10�5 2:14543 � 10�4 8:35095 � 10�3 1:26205 � 10�2

7:42883 � 10�3 2:10991 � 10�1 8:3435 � 10�1 1.26174

and pressure errors for NSE in test 2: various forms and Reynolds numbers.

s number ku� uhk1;0 kru�ruhk2;0 kp� phk1;0 krp�rphk2;0

ive form
6:51439 � 10�5 6:66111 � 10�4 1:06432 � 10�2 1:34122 � 10�2

4:50658 � 10�2 4:76032 � 10�1 8:92802 � 10�1 1.3361

mmetric form
1:19698 � 10�5 2:18059 � 10�4 3:71786 � 10�4 1:2624 � 10�2

7:65648 � 10�3 2:15944 � 10�1 3:90984 � 10�2 1.26198

kP � Phk1;0 krP �rPhk2;0

form
3:19832 � 10�12 1:05429 � 10�11 9:36552 � 10�6 5:77438 � 10�11

3:19792 � 10�12 1:08799 � 10�11 9:35505 � 10�5 3:40516 � 10�11

Fig. 1. Cylinder domain.

Shown above are two levels of mesh refinement provided by Freefem for computing flow around a cylinder. The meshes provide, respectively,
and 56,702 degrees of freedom for the computations.
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m1
2krðu� uhÞk þ c1

2kdivðu� uhÞk þ kp� phk 6 Chððm1
2 þ c1

2Þkrruk þ krpkÞ ð2:15Þ
with a constant C that is independent of m and c. Estimates (2.14) and (2.15) suggest that for small enough m we have
for c ¼ 0 : krðu� uhÞk ’ h krruk þ 1
m
krpk

� �
;

for c ¼ 1 : krðu� uhÞk ’
hffiffiffi
m
p krruk þ krpkð Þ:
Thus, large pressure gradients compared to the velocity second derivatives may lead to a poor convergence of the finite
element velocity if one does not include grad–div stabilization. Otherwise, the dependence of krðu� uhÞk on m is much
milder.
0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

Shown above is the velocity field at times t = 2,3,5–8 for the NSE solved on mesh 1 with the skew-symmetric form of the nonlinearity. The vortex
orms successfully.
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3. Three numerical experiments

We consider three carefully chosen examples that, we believe, give strong support for the scenario of accuracy loss de-
scribed in the introduction. We use the software FreeFem++ [13] to run the numerical tests. The models are discretized with
the Crank–Nicolson method in time and with the Taylor–Hood finite elements (continuous piecewise quadratic polynomials
for the velocity and linears for the pressure) in space; the nonlinear system is solved by a fixed point iteration.

3.1. Test 1: Poiseuille flow

In X ¼ ð0;4Þ � ð0;1Þ, a parabolic inflow v(x,y, t) = 0 and uðx; y; tÞ ¼ 1
2m yð1� yÞ (at x = 0) is prescribed. No-slip boundary con-

ditions are given at the top and bottom, and the do-nothing boundary condition is prescribed at the outflow. The exact solu-
tion is well known to be vðx; yÞ ¼ 0;uðx; yÞ ¼ 1

2m yð1� yÞ; pðx; yÞ ¼ �xþ 4, and we take it as our initial condition. A discussion
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Fig. 4. Shown above is the velocity field at times t = 2,3,5–8 for the NSE solved on mesh 1 with the rotation form of the nonlinearity. The vortex street fails
to form.
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of this problem can be found in Canuto et al. [6]. The key conserved quantity in the flow is the flux through any cross section
given by
Fig
QðxÞ ¼
Z

0<y<1
uðx; yÞdy ¼ 1

12m
:

Note that u ¼ ðu;vÞ and p are in the finite element spaces so that we expect that discretization of the convective and
skew-symmetric form of the NSE will have very small errors (comparable to the errors from numerical integration and solu-
tion of the linear and nonlinear systems arising). On the other hand, if the rotation form is used the exact solution is
vðx; yÞ ¼ 0;

uðx; yÞ ¼ 1
2m

yð1� yÞ;

Pðx; yÞ ¼ pðx; yÞ þ 1
8m2 y2ð1� yÞ2
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. 5. Shown above is the Bernoulli pressure P at times t = 2,4–8 from NSE rotation Form on mesh 2, where a vortex street forms successfully.



is not in the pressure finite element space. Thus, in the rotation form there will be discretization errors in p that influence as
well the velocity error through the discrete momentum equation, since
P R Q h and kPk ¼ Oðm�2Þ: ð3:1Þ
To test Poiseuille flow we take the time step Mt ¼ 0:01 and number of time steps = 100, so the final time is T ¼ 1.
For the flux computations we find that expressing the nonlinearity in different forms does not affect the true value of the

flux for Re = 1. Results are presented in Table 1.
Next we test the coupling between velocity and pressure errors by computing the error on a fixed mesh for Re ¼ 1 and

Re ¼ 10 (decreasing m). We present the results at the final time T ¼ 1 and at the mesh level with number of degrees of free-
dom being 1028 in Table 2.

From Table 2, the convective form of NSE performs best with respect to the size of the velocity and pressure errors. The
velocity and pressure errors for the skew-symmetric form are bigger than the corresponding errors for the convective form.
It is known that skew-symmetric form of the nonlinear term of NSE imposes difficulties for simulation of Poiseuille flow
[11,16], which we also observe here.
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We also observe that while the velocity errors are smaller for the rotation form compared to the skew-symmetric
form, the error in the (Bernoulli) pressure gradient is larger than the (usual) pressure gradient error of the skew-sym-
metric form. Note that for rotation form, the pressure error kp� phk1;0 and the velocity error krðu� uhÞk2;0 seem to
scale like Re3, and ku� uhk1;0 seems to scale like Re2. Poor scaling with Re can be improved in the case of Stokes
and rotation form steady NSE with the use of grad–div stabilization, and is our motivation in later test problems to
use this stabilization.

3.2. Test 2: Resolution vs. nonlinearity

The relative importance of resolution of pressures vs. nonlinearity can be tested by artificially reversing p and P in Test 1
in a (completely) synthetic test problem. Thus, we take:
Fig. 7.
Bernou
the dev
uðx; yÞ ¼ 1
2m

yð1� yÞ; vðx; yÞ ¼ 0; Pðx; yÞ ¼ �xþ 4;
so that
pðx; yÞ ¼ �xþ 4� 1
8m2 y2ð1� yÞ2:
These are inserted in the Navier–Stokes equations to obtain a right-hand side f ¼ fðx; y; mÞ:
fðx; y; mÞ :¼ 0;
1

4m2 y2ð1� yÞ � yð1� yÞ2
	 
� �T

:

The resolution of p vs. P is exactly reversed from Test 1. We present the error behavior at the final time T ¼ 1 and at the mesh
level with number of degrees of freedom being 1028 in Table 3.

Table 3 shows that discretization errors are present if the solution does not belong to the finite element space. The
computed errors from Test 2 are the mirror image (up to the preset accuracy used for the various linear and nonlinear
iterative solvers’ stopping criteria) of the error behavior in the previous test. Thus it is clear that, without grad–div sta-
bilization, in the rotation form it is the resolution of the Bernoulli pressure determine the quality of the overall velocity
approximation.

3.3. Test 3: Flow around a cylinder

Next we consider the benchmark problem of flow around a circular cylinder offset slightly in a channel, from [30], see
Fig. 1. The primary feature is the von Karman vortex street. To explore resolution vs. solution quality for the two formula-
tions we test at a Reynolds number slightly above the critical one for vortex shedding and we have the simple test: Vortex
street formed yes or no.
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Shown here is a comparison of the L2 norm of pressure gradients from simulations of 2d flow around a cylinder on meshes 1 and 2. P denoted
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The pressure (and accuracy thereof) is critical for the formation of the vortex street. To test the resolution hypothesis, we
move to mesh 2, which fully resolves both formulations. Figs. 5 and 6 plot p (from skew-symmetric formulation) and P (from
rotation formulation), respectively, and from these plots we see indication that P contains much smaller transition regions
than p. The difference can also be seen when the L2 norm of rp;rP are plotted vs. time, in Fig. 7.

Fig. 8 shows the effect of the grad–div stabilization of the solution computed in mesh 1 with c ¼ 1 and the rotation form.
Without the stabilization, the rotation form is unable to predict the correct behavior. With grad–div stabilization, the correct
behavior is predicted already on mesh 1.

3.4. Test 4: Channel flow over a forward and backward facing step

The most distinctive feature of this common test problem is the formation and detachment of vortices behind the step (a
more detailed discussion of this test problem can be found in Gunzburger [10] and John and Liakos [17]). We study the
behavior of NSE schemes using the convective form, the skew-symmetric form, the rotation form, and the rotation form with
grad–div stabilization (with c ¼ 0:5). The simulations are performed on the same domain, which is meshed with Delaunay
triangulation (provided by Freefem), yielding 24,598 degree of freedom systems. We set Re ¼ 600 (slightly above the critical
Reynolds number for which eddies are known to shed), and take time step Dt ¼ 0:005.

Results are presented for a parabolic inflow profile, given by u ¼ ðu1;u2ÞT , with u1 ¼ yð10� yÞ=25;u2 ¼ 0. The no-slip
boundary condition is prescribed on the top and bottom boundary, as well as on the step. At the outflow the standard
do-nothing boundary condition is imposed.
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Fig. 9. NSE with convective form of nonlinearity.
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We conclude that the NSE with the convective and skew-symmetric forms of the nonlinearity give the appropriate shed-
ding of eddies behind the step. The NSE with the rotation form fails to describe the flow correctly, but the rotation form with
grad–div stabilization successfully captures the generation and detachment of eddies (see Figs. 9–12).

As an interesting but tangential observation, the do-nothing outflow boundary condition is not satisfactory for use with
the rotation form which means that, until the outflow boundary issue is resolved for the rotation form, for practical purposes
one has to use a domain which is sufficiently large so that the do-nothing boundary condition is applied far enough from
region of interest. As we see in Fig. 12, numerical artifacts are seen near the outflow boundary.

4. Conclusions

Although the convective, skew-symmetric and rotation forms of the nonlinearity are equivalent in the continuous NSE, in
finite element discretizations the rotation form may offer better physical properties (in terms of conservation laws), superior
properties for iterative algorithm development, is typically more stable than the convective form, and is less expensive than
computing the skew-symmetric form.

However, using rotation form requires the use of the Bernoulli pressure, which is generically significantly more complex
than the usual pressure of the convective and skew-symmetric forms. Bernoulli pressure is thus not as easily resolved, which
causes significantly worse results in our benchmark problems for the rotation form scheme. Fortunately, with the use of
grad–div stabilization, the inaccuracy in the Bernoulli pressure associated with using rotation form seems to be localized
in the pressure error and have much reduced (or even minimal) effect upon the velocity error.
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